Lightweight and Secure PUF Key Storage Using Limits of Machine Learning

Meng-Day (Mandel) Yu¹, David M'Raïhi¹, Richard Sowell¹, Srinivas Devadas²

¹Verayo, Inc., San Jose, CA, USA ²MIT, Cambridge, MA, USA

Agenda

Physical Unclonable Function (PUF) Overview

PUF Noise Profile

• Response size, temperature, voltage

Deriving Stable PUF Bits

- Traditional: Large block ECC, Two-stage ECC
- Lightweight: Stable bits w/o complex ECC

Security Framework

• "Use what cannot be learned about the system"

Conclusions

PUF Overview

Physical Unclonable Functions (PUF)

Tiny electronic circuits extract silicon *manufacturing variations*

Unique characteristics = "silicon biometrics"

PUF responses are "noisy"

To generate <u>Stable PUF Bits</u>: add error correction algorithm

PUF Noise Profile

PUF Noise Profile

Deriving Stable PUF Bits

Methods to Derive Stable Bits

Large Block ECC

- Single stage error correction
 - BCH(255,63,t=30) [Suh-MIT2005]
 - BCH(255,13,t=59) [AMSSW-IEEE_S&P2011]

Two-stage ECC

VERAYO

- Quadratic reduction in complexity
 - Repetition(11,1,t=5) + Golay(24,13,t=3) [BGSST-CHES2008]
 - Repetition(11,1,t=5) + RM(16,5,t=3) [BGSST-CHES2008]
 - Repetition_{SoftDecision}(3,1,t=1) + RM_{SoftDecision}(64,22,t=7) [MTV-CHES2009]
 - IBS + BCH(63,30,t=6) [YD-IEEE_D&T2010]

Lightweight (no complex ECC)

- Use "Index Based Syndrome" (IBS) w/o BCH
- Additional complexity reduction (75%)
- Add retry, simple coding to improve reliability

Index-Based Syndrome (IBS) Coding

From [YD-IEEE_D&T2010]

Use a group of PUF output values to store a bit sequence Simple case: a sequence of 1 bit

- Encoder:
 - If $\underline{B} = 1$, $\underline{S} = \text{index of } f_1(\underline{R}_0 = r_0, \dots, \underline{R}_{q-1} = r_{q-1})$
 - If $\underline{B} = 0$, $\underline{S} = \text{index of } f_0(\underline{R}_0 = r_0, \dots, \underline{R}_{q-1} = r_{q-1})$

Let $f_1 = \max$ function, $f_0 = \min$ function <u>*B*</u> = bit to store, <u>*S*</u> = Syndrome Word

- Decoder:
 - $\underline{B'} = \text{sign}_{of} (\underline{R}_{s})$

Advantages:

VERAYO

- Trivially simple encoder and decoder
- High coding gain -> reduction in ECC complexity
- Provably secure (more later)

Size Comparisons (Xilinx Virtex-5 LX50)

Lightweight (IBS)	2-stage ECC (IBS + BCH63)	Large Block (BCH255)
69 registers	471 registers	6400 registers (est. using 16x)
~1.2% SLICE count (99/7200)	~5% SLICE count (393/7200)	~65% SLICE count

- Includes decoder + encoder
- Does not include APB interface, I/O buffering
- Even smaller if test logic, configurability removed

Decoder Core Comparisons (Xilinx Spartan 3E-500)

Retargeted implementation for Spartan 3E (w/o optimizations) for comparison

Use best results from [MTV-CHES2009], [BGSST-CHES2008]

Goal: 128-bit key

	Current Work		[MTV-CHES2009]	[BGSST-CHES2008] PUF-Optimized	[BGSST-CHES2008] Decoder-Optimized	
Area	116 SLICES (no μcode required)		164 SLICES (μcode ROM required)	580 SLICES (μcode ROM required)	110 SLICES (μcode ROM required)	
Dec Cycles	~16640 cycles (@ 100Mhz+)		~10298 cycles (@ 50.2Mhz)	>= 24024 cycles (@ 151.5Mhz)	>= 29925 cycles (@ 175.4Mhz)	
Helper Data	780 bit		13952 bit	3824 bit	6288 bit	
PUF Size	1280 OSC* (Security- Optimized)	256 OSC* (PUF- Optimized)	1536 bit SRAM**	3696 bit SRAM**	6160 bit SRAM**	
Stability	-55°C to 125°C, V _{nom} +/- 10%, WC VT Corners, Aging		PUF noise model does not account for V,T.	PUF noise model accounts for -20°C to 80°C [GSST-CHES2007]. No voltage.		
Security	Insufficient equations to learn system (no i.i.d assumption)	Use unlearnable part of system (no i.i.d. assumption)	Soft decision information is information- theoretically secure (i.i.d. assumption)	No explicit security argument to account for leaks associated w/ heavy repetition coding		

* 5 inversions per OSC (~3 NAND2 equivalent gate, 1st order est.) ** 6T cell per bit (~3 NAND2 equivalent gate)

WC Voltage / Temperature Corners

Empirical PUF data from Xilinx Virtex-5 FPGAs Error Free Performance using 4-bit Index

- 1M+ blocks, implied failure rate < 1 ppm
- SS Corner 125°C, 0.9V
- FF Corner -55°C, 1.1V

Accelerated Aging

~90M+ blocks, error free performance, 4.25 bit Index

- Implied error rate <= 12 parts per <u>billion</u> (ppb)
- Accelerated age: 20+ yrs @ 55°C
- Provisioning: 25°C, 1.0V; Regeneration: 125°C, 1.10V

Aging deteriorates silicon, increasing Indexing requirement by 1/4 bit

Voltage Testing, ASIC

PUF + Indexing Algorithm in .13µm silicon

• 4 to 5 bit Index for reliable (ppm level or better) operation

Results consistent with FPGA

Security Framework

Security Dependencies of Prior Work (1)

Recall: [BGSST-CHES2008]

- No explicit security argument for use of Repetition[11,1,t=5] code
- Heavy repetition coding highly sensitive to PUF bias:

Bits leaked per repetition-coded bit =
[YD-IEEE_D&T2010]
$$\frac{|PUFbias - 0.5|}{|repetition/2|} - 0.5|$$

1. if PUF bias = .55, all bits leaked!

2. if PUF bias = .505, 1 bit leaked out of every 9 bits repetition-coded

... this is true even if PUF output bits are assumed to be i.i.d.

Current work avoids heavy repetition coding

Security Dependencies of Prior Work (2)

[MTV-CHES2009] and [YD-IEEE_D&T2010] both use proofs that require i.i.d. PUF output assumption (implicitly or explicitly)

Questions:

- Memory PUF: Are there correlations based on memory word columns?
- Arbiter PUF / OSC PUF: Are there correlations with reuse of delay elements?

Can we remove i.i.d. assumption?

Unconditional Security

Recall:

- Shannon Entropy: $H(\underline{X}) = -p(x) \log_2 p(x)$
- Mutual Information: $I(\underline{Y}; \underline{X}) = H(\underline{Y}) H(\underline{Y} | \underline{X})$

Unconditional security (perfect secrecy) [Shannon, 1949]

- Ciphertext share no information with the Key
- Secure against a *computationally-<u>un</u>bounded* adversary
- <u>Strongest form of security</u>
- Information shared between Ciphertext and Key:
 - $I(\underline{CT}^{alg}; \underline{Key}) = H(\underline{Key}) H(\underline{Key} | \underline{CT}^{alg})$

We adapt this unconditional security measure to develop a syndrome leakage metric...

Leaked Bits (LB)

What is the information shared between a Syndrome Word and a perfect model of the PUF?

- Code offset [Dodis, 2004], 3x repetition coding
 - $LB(\underline{S}^{3x}) \equiv I(\underline{S}^{3x}; \underline{M}^{\infty}) = H(\underline{S}^{3x}) H(\underline{S}^{3x} | \underline{M}^{\infty}) = 3 1 = 2 \text{ bits}$
- Index-Based Syndrome (IBS) Coding [Yu, 2010], 3-bit index
 - $LB(\underline{S}^{3i}) \equiv I(\underline{S}^{3i}; \underline{M}^{\circ}) = H(\underline{S}^{3i}) H(\underline{S}^{3i} | \underline{M}^{\circ}) = 3 1 = 2$ bits
- Can we leak less information?

Syndrome Distribution Shaping (SDS): Intuition

IBS: pick most + or most - value, to encode a "1" bit or a "0" bit

Cryptographic Hardware and Embedded Systems (CHES) 2011, Nara, Japan

ERAYO

Syndrome Distribution Shaping (SDS)

Let *p* = probability a PUF output choice is ignored or skipped

• i.e., the max or min selection ignores that PUF output choice

Reducing Leaked Bits while preserving error correction power:

• $I(\underline{S}^{3i}, \underline{M}^{\infty}) = 2$ bits

- $I(\underline{S}^{W=5, p=3/4}, \underline{M}^{\circ}) = 0.80 \text{ bits}$
- $I(\underline{S}^{W=6, p = 7/8}, \underline{M}^{\infty}) = 0.71 \text{ bits}$
- $I(\underline{S}^{W=7, p = 15/16}, \underline{M}^{\infty}) = 0.67 \text{ bits}$

"Choosing best out of 8" "Choosing best out of 16, w/ ~half of the choices eliminated"

Leaked Bits 42x!

Machine Learning Results

Ruhrmair, et. al., "Modeling Attacks on PUFs", ACM CCS 2010.

$$N_{CRP} \approx 0.5 \frac{k+1}{\varepsilon}$$

N_{CRP} : number of challenge / response pairs k: # of delay parameters in an arbiter PUF ε: classification error

Observation: Adversary with k C/R pairs cannot do much better than guessing, i.e., $\epsilon \approx 0.5$.

What *cannot* be learned? (1)

Now rearrange the equation, rename terms, etc.

$$N_{CRP} \approx 0.5 \frac{k+1}{\varepsilon}$$
 $\varepsilon \approx \min(0.5 \frac{k+1}{\Sigma LB}, 0.5)$

Conservative: stay <u>safely within</u> boundary where $\varepsilon = 0.5$ such that virtually <u>nothing</u> is learned from Syndrome Bits.

When $0 \le \epsilon \le 0.5$, <u>something</u> is learned from the Syndrome Bits.

But how much information *cannot* be learned?

What <u>cannot</u> be learned? (2)

We know "bias" reduces min-entropy $H_{\rm m}$

Now, instead of "bias", we have ϵ <u>conditioned upon</u> Syndrome Words known to the adversary at some point in time

-> Use conditional version of min-entropy

 $H_{\infty}(\underline{X} \mid \underline{Y}) \equiv -\log_2 \left(E_{y \leftarrow \underline{Y}} [2^{-H_{\infty}(\underline{X} \mid \underline{Y} = y)}] \right)$ [Dodis, "Fuzzy Extractor", 2004] $\text{where: } H_{\infty} \equiv -\log_2 \left(\text{pr}_{\max}(.) \right)$

we note this applies to a bit-oriented learner as well as a block-oriented learner

- What the adversary can learn is reflected in classification error $\boldsymbol{\epsilon}$
- H_{∞} computes the amount of secrecy left in the system using ϵ
- H_{∞} reflects the min-entropy that the ML-adversary cannot "touch" or learn

Security Sketch

VERAYO

Now, without i.i.d. PUF output assumption...

Secure Construction #1:

- 640 OSC pairs, forming k = 640 "delay parameters"
- Only k / 2 equations (each with a 1 bit outcome) leaked via Syndrome
- 320 degrees of freedom to keep secret 128-bits of information

"insufficient equations to learn system"

Secure Construction #4:

- 128 OSC pairs, forming k = 128 "delay parameters"
- Use ε curve to compute amount of secrecy left in the system
- Can extract a 128-bit key using results from [Ruhrmair, 2010]
 - Secure against a (ε,ΣLB) Machine-Learning adversary

"use unlearnable part of system"

Conclusions

Conclusions

Lightweight PUF Key Generation

- 75% reduction in complexity from 2-stage ECC
 - Two stage ECC better characterized and also available
- Environmentally Stable
 - Temperature: -55°C to 125°C
 - Voltage: V_{nom} +/- 10%
 - WC VT Corners
 - Aging: 20+ yrs @ 55°C
 - Error free, 90M+ tests, FPGA, ASIC

Security Framework

- Security-Optimized: "Insufficient eqs to learn sys"
- PUF-Optimized: "Use unlearnable part of system"

Future Work

• De-rate results to account for side channel information

THANK YOU!

Implied error rate <= 12 parts per *billion*

No i.i.d. PUF output assumption

Extras:

PUF Randomness / Uniqueness

NIST Randomness Test Results

Verayo PUF Output bits are "random" based on NIST testing

- Low bias (< +/- 1%)
- Results affirmed using on other statistical testing methods

Statistical Test	Block/Template Length	Success ratio (chip #100)	Success ratio (chip #101)	Success ratio (chip #102)	Success ratio (chip #103)	Reference bitstream ¹
Frequency	-	99%	99%	98%	99%	98%
BlockFrequency	128	100%	100%	99%	99%	97%
CumulativeSums	-	99% - 99%	99% - 100%	97% - 98%	99% - 99%	98% - 99%
Runs	-	97%	99%	100%	99%	100%
LongestRun	-	100%	100%	99%	99%	97%
Rank	-	100%	98%	100%	100%	100%
FFT	-	100%	100%	100%	100%	100%
NonOverlappingTemplate	9	94% - 100%	95% - 100%	95% - 100%	95% - 100%	95% - 100%
Overlapping Template	9	98%	98%	99%	98%	97%
Universal	-	97%	98%	100%	96%	100%
ApproximateEntropy	10	100%	99%	99%	99%	100%
RandomExcursions	-	98%-100%	97% - 100%	97% - 100%	98% - 100%	98% - 100%
RandomExcusionVariant	-	97% - 100%	97% - 100%	97% - 100%	96% - 100%	93% - 100%
Serial	16	99% - 99%	99% - 100%	99% - 100%	98% - 98%	98% - 100%
LinearComplexity	500	100%	99%	99%	99%	100%
Cumulative p-values		100% (188/188) pass				
Cumulative proportions		99% (187/188) pass	99% (187/188) pass	99% (187/188) pass	99% (187/188) pass	98% (184/188) pass

¹ From George Marsaglia's Random Number CDROM.

Uniqueness Analysis

ERAYO

240 PUF devices (12 FPGAs, 20 PUFs each)

