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Agenda

Physical Unclonable Function (PUF) Overview
PUF Noise Profile

• Response size, temperature, voltage

Deriving Stable PUF Bits
• Traditional: Large block ECC, Two-stage ECC
• Lightweight: Stable bits w/o complex ECC

Security Framework
• “Use what cannot be learned about the system”

Conclusions
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PUF Overview



4Cryptographic Hardware and Embedded Systems (CHES) 2011, Nara, Japan

Physical Unclonable Functions (PUF)

Tiny electronic circuits extract silicon manufacturing variations
Unique characteristics = “silicon biometrics”
PUF responses are “noisy”
To generate Stable PUF Bits: add error correction algorithm

manufacturing
variations
extraction

error correction
algorithm

R’ (noisy) R (Stable PUF Bits)
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PUF Noise Profile
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PUF Noise Profile

22/63 = 34.9%
(63-bit Response)

63/255 = 24.7%
(255-bit Response)

Unstable bits  with ΔV, ΔT
•Noise  ~1.5x to ~2x

% of unstable bits↓with larger
response size

•BCH error correction limit = 25%
•Use larger response size to   
correct noisier PUF
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Deriving Stable PUF Bits
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Methods to Derive Stable Bits
Large Block ECC

• Single stage error correction
• BCH(255,63,t=30) [Suh-MIT2005]

• BCH(255,13,t=59) [AMSSW-IEEE_S&P2011]

Two-stage ECC
• Quadratic reduction in complexity

• Repetition(11,1,t=5) + Golay(24,13,t=3) [BGSST-CHES2008]

• Repetition(11,1,t=5) + RM(16,5,t=3) [BGSST-CHES2008]

• RepetitionSoftDecision(3,1,t=1) + RMSoftDecision(64,22,t=7) [MTV-CHES2009]

• IBS + BCH(63,30,t=6) [YD-IEEE_D&T2010]

Lightweight (no complex ECC)
• Use “Index Based Syndrome” (IBS) w/o BCH
• Additional complexity reduction (75%)
• Add retry, simple coding to improve reliability
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Index-Based Syndrome (IBS) Coding
From [YD-IEEE_D&T2010]

Use a group of PUF output values to store a bit sequence
Simple case: a sequence of 1 bit

• Encoder:
• If B = 1, S = index of f1(R0 = r0, … Rq-1 = rq-1)
• If B = 0, S = index of f0(R0 = r0, … Rq-1 = rq-1)

• Decoder:
• B’ = sign_of (Rs)

Advantages:
• Trivially simple encoder and decoder
• High coding gain -> reduction in ECC complexity
• Provably secure (more later)

Let f1 = max function, f0 = min function
B = bit to store, S = Syndrome Word
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52x

Size Comparisons (Xilinx Virtex-5 LX50)

Lightweight
(IBS)

2-stage ECC
(IBS + BCH63)

Large Block
(BCH255)

69 registers 471 registers 6400 registers
(est. using 16x)

~1.2% SLICE 
count
(99/7200)

~5% SLICE 
count
(393/7200)

~65% SLICE 
count

4x

1x

• Includes decoder + encoder
• Does not include APB 

interface, I/O buffering
• Even smaller if test logic, 

configurability removed
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Decoder Core Comparisons (Xilinx Spartan 3E-500)

Use 
unlearnable
part of system
(no i.i.d. 
assumption)

PUF noise model accounts for -20oC to 80oC 
[GSST-CHES2007].  No voltage.  

PUF noise model does 
not account for V,T.

-55oC to 125oC, Vnom +/- 10%,
WC VT Corners, Aging

Stability

Current Work [MTV-CHES2009] [BGSST-CHES2008]
PUF-Optimized

[BGSST-CHES2008]
Decoder-Optimized

Area 116 SLICES
(no μcode required)

164 SLICES
(μcode ROM required)

580 SLICES
(μcode ROM required)

110 SLICES
(μcode ROM required)

Dec
Cycles

~16640 cycles
(@ 100Mhz+)

~10298 cycles
(@ 50.2Mhz)

>= 24024 cycles
(@ 151.5Mhz)

>= 29925 cycles
(@ 175.4Mhz)

Helper 
Data

780 bit 13952 bit 3824 bit 6288 bit

PUF Size 1280 OSC*
(Security-
Optimized)

256 OSC*
(PUF-
Optimized)

1536 bit SRAM** 3696 bit SRAM** 6160 bit SRAM**

Security Insufficient 
equations to 
learn system
(no i.i.d
assumption)

Soft decision 
information is 
information-
theoretically secure
(i.i.d. assumption) 

No explicit security argument to account for 
leaks associated w/ heavy repetition coding

Retargeted implementation for Spartan 3E (w/o optimizations) for comparison
Use best results from [MTV-CHES2009], [BGSST-CHES2008] 

Goal: 128-bit key

* 5 inversions per OSC (~3 NAND2 equivalent gate, 1st order est.)    ** 6T cell per bit (~3 NAND2 equivalent gate)
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WC Voltage / Temperature Corners
Empirical PUF data from Xilinx Virtex-5 FPGAs
Error Free Performance using 4-bit Index

• 1M+ blocks, implied failure rate < 1 ppm
• SS Corner 125oC, 0.9V
• FF Corner -55oC, 1.1V
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Accelerated Aging
~90M+ blocks,  error free performance, 4.25 bit Index

• Implied error rate <= 12 parts per billion (ppb)
• Accelerated age: 20+ yrs @ 55oC
• Provisioning: 25oC, 1.0V; Regeneration: 125oC, 1.10V

Aging deteriorates silicon, increasing Indexing requirement by ¼ bit
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Voltage Testing, ASIC
PUF + Indexing Algorithm in .13μm silicon

• 4 to 5 bit Index for reliable (ppm level or better) operation
Results consistent with FPGA
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Security Framework



16Cryptographic Hardware and Embedded Systems (CHES) 2011, Nara, Japan

Security Dependencies of Prior Work (1)
Recall: [BGSST-CHES2008]

• No explicit security argument for use of Repetition[11,1,t=5]  code
• Heavy repetition coding highly sensitive to PUF bias:

Bits leaked per repetition-coded bit =
[YD-IEEE_D&T2010]

1. if PUF bias = .55, all bits leaked!
2. if PUF bias = .505, 1 bit leaked out of every 9 bits repetition-coded
… this is true even if PUF output bits are assumed to be i.i.d. 

Current work avoids heavy repetition coding

⎡ ⎤ 5.02/
5.0

−

−

repetition
repetition

PUFbias
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Security Dependencies of Prior Work (2)

[MTV-CHES2009] and [YD-IEEE_D&T2010] both use proofs that require i.i.d. PUF 
output assumption (implicitly or explicitly)

Questions:
• Memory PUF: Are there correlations based on memory word columns?
• Arbiter PUF / OSC PUF: Are there correlations with reuse of delay elements?

Can we remove i.i.d. assumption?
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Unconditional Security
Recall:

• Shannon Entropy: H(X) = – p(x) log2 p(x)
• Mutual Information: I(Y ; X ) =  H(Y) – H(Y | X) 

Unconditional security (perfect secrecy) [Shannon, 1949]
• Ciphertext share no information with the Key
• Secure against a computationally-unbounded adversary
• Strongest form of security
• Information shared between Ciphertext and Key: 

• I(CTalg; Key)  =  H(Key) – H(Key | CTalg)

We adapt this unconditional security measure to develop a 
syndrome leakage metric…
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Leaked Bits (LB)
What is the information shared between a Syndrome Word and a perfect 
model of the PUF?

• Code offset [Dodis, 2004], 3x repetition coding
• LB(S3x) ≡ I(S3x; M∞) = H(S3x) – H(S3x | M∞) = 3 – 1 = 2 bits

• Index-Based Syndrome (IBS) Coding [Yu, 2010], 3-bit index
• LB(S3i) ≡ I(S3i; M∞) = H(S3i) – H(S3i | M∞) = 3 – 1 = 2 bits

• Can we leak less information?
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Syndrome Distribution Shaping (SDS): Intuition

IBS: pick most + or most - value, to encode a “1” bit or a “0” bit

LB(S3i) ≡ I(S3i; M∞) = H(S3i) – H(S3i | M∞) = 2 bits

SDS: randomly select two max or two min

max

min

1/2

1/2 1 bit

max

min

1/4

1/4 2 bit

1/4

1/4

LB(S3i) ≡ I(S3i; M∞) = H(S3i) – H(S3i | M∞) = 1 bits

Reduced Leaked Bits (per 
Syndrome Word) by 
“flattening” distribution
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Syndrome Distribution Shaping (SDS)

Let p = probability a PUF output choice is ignored or skipped
• i.e., the max or min selection ignores that PUF output choice

Reducing Leaked Bits while preserving error correction power:

• I(S3i, M∞) = 2 bits
• I(SW=4, p = 1/2, M∞) = 1.02 bits
• I(SW=5, p = 3/4, M∞) = 0.80 bits
• I(SW=6, p = 7/8, M∞) = 0.71 bits
• I(SW=7, p = 15/16, M∞) = 0.67 bits

“Choosing best out of 8”
“Choosing best out of 16, w/ ~half of
the choices eliminated”

Leaked Bits ↓2x!
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Machine Learning Results
Ruhrmair, et. al., “Modeling Attacks on PUFs”, ACM CCS 2010.

NCRP : number of challenge / response pairs
k: # of delay parameters in an arbiter PUF
ε: classification error

Observation: Adversary with k C/R pairs cannot do much better than 
guessing, i.e., ε ≈ 0.5.

ε
15.0 +

≈
kNCRP
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What cannot be learned? (1)

Now rearrange the equation, rename terms, etc.

Conservative: stay safely within boundary where ε = 0.5 such that virtually 
nothing is learned from Syndrome Bits.

When 0 <= ε < 0.5, something is learned from the Syndrome Bits.

But how much information cannot be learned?

ε
15.0 +

≈
kNCRP )5.0,15.0min(

LB
k
Σ
+

≈ε
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What cannot be learned? (2)
We know “bias” reduces min-entropy H∞

Now, instead of “bias”, we have ε conditioned upon Syndrome Words 
known to the adversary at some point in time 
-> Use conditional version of min-entropy

~
H∞(X | Y) ≡ –log2 (Ey←Y[2 –H∞(X|Y=y) ]) [Dodis, “Fuzzy Extractor”, 2004]

where: H∞ ≡ –log2 (prmax(.))
we note this applies to a bit-oriented learner as well as a block-oriented learner

• What the adversary can learn is reflected in classification error ε
~

• H∞ computes the amount of secrecy left in the system using  ε
~

• H∞ reflects the min-entropy that the ML-adversary cannot “touch” or learn
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Security Sketch

)5.0,15.0min(
LB

k
Σ
+

≈ε

I(CTalg; Key)  =  H(Key) – H(Key | CTalg)

LeakedBits(Synalg) = I(Synalg; PufParam)

1. Use Shannon unconditional
security to derive LB metric

2. Assume (ε,ΣLB)-ML Adversary, e.g.,

~
H∞(X | Y) ≡ –log2 (Ey←Y[2–H∞(X|Y=y) ])

3a. ”insufficient eqs to learn system”

“Security-Optimized”

3b. ”use unlearnable part of system”
ε reduces min-entropy (secrecy remaining) 
as ΣLB  increase to where ε < 0.5

want ε ≈ 0.5, e.g.,
k multi-bit parameters,
k/2 equations w/ 1 bit outcome,
k/2 degrees of freedom,
secret bits << k/2

“PUF-Optimized”

Can reduce
using SDS
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Now, without i.i.d. PUF output assumption…
Secure Construction #1:

• 640 OSC pairs, forming k = 640 “delay parameters”
• Only k / 2 equations (each with a 1 bit outcome) leaked via Syndrome
• 320 degrees of freedom to keep secret 128-bits of information

”insufficient equations to learn system”

Secure Construction #4:
• 128 OSC pairs, forming k = 128 “delay parameters”
• Use ε curve to compute amount of secrecy left in the system
• Can extract a 128-bit key using results from [Ruhrmair, 2010]

• Secure against a (ε,ΣLB)  Machine-Learning adversary

“use unlearnable part of system”
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Conclusions
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Conclusions
Lightweight PUF Key Generation

• 75% reduction in complexity from 2-stage ECC
• Two stage ECC better characterized and also available

• Environmentally Stable
• Temperature: -55oC to 125oC
• Voltage: Vnom +/- 10%
• WC VT Corners
• Aging: 20+ yrs @ 55oC
• Error free, 90M+ tests, FPGA, ASIC

Security Framework
• Security-Optimized: “Insufficient eqs to learn sys”
• PUF-Optimized: “Use unlearnable part of system”

Future Work
• De-rate results to account for side channel information

THANK YOU!

No i.i.d. PUF output assumption

Implied error rate <= 12 parts per billion
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Extras:
PUF Randomness / Uniqueness
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NIST Randomness Test Results

Verayo PUF Output bits are “random” based on NIST testing
• Low bias (< +/- 1%)
• Results affirmed using on other statistical testing methods
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Uniqueness Analysis
240 PUF devices (12 FPGAs, 20 PUFs each)

Comparisons   μ δ

57k               .1%     .0321

920k             .05%   .0316

from ideal

from ideal

“sample mean converges to true mean 
for iid process and unbiased estimator”

“Student-t distribution converges to 
Gaussian as sample size → ∞”

Conclusions: µ and σ should not get worse
with increase in number of comparisons


